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In this paper we present a fast numerical technique for finding solu- 
tions of the steady-state Stokes equations on both two- and three- 
dimensional domains. We implement the method on a special staggered 
grid for a rectangular (cubic) domain and obtain a solution in an order 
of O(N log N) operations for both two- and three-dimensional cases, 
where N is the number of grid points in the domain. The main idea is to 
derive from the Stokes equations an equation for the pressure p, Ap = b, 
where the matrix A is semi-positive definite and very-well conditioned 
on the orthogonal complement of its null space. 0 1992 Academic 

Press. 1°C 

1. INTRODUCTION 

For simplicity, we describe the problem in the two dimen- 
sional case. The Stokes equations have the form 

-pAu+Vp=f, (1) 

v.u=o (2) 

where u = (u, u) is the velocity field, p is the pressure, 
f = (fY,,fY) is the body force, and p is the viscosity of the 
fluid. Let 52 be a rectangular domain. We assume the 
following boundary condition on u, 

4x, VI = u,(x, Yh (x, Y) E x2. (3) 

ub must satisfy 

r u,.ndS=O, (4) 
J&2 

where n is the outer unit normal to XJ. It is well known that 
we need not prescribe the boundary condition on p. 
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Most of the work done before on this problem begins 
with replacing Eqs. (1) and (2) by the system 

-,uAu+Vp=f 

Ap=V.f 

and then trying to solve the Laplace equation forp. The lack 
of boundary condition on p causes some difficulty. Much 
work has been done to determine the correct boundary con- 
dition for p (see, e.g., discussion in Strikwerda [7]). Work 
using the original system (1) and (2) has also been done, but 
it still requires some additional conditions for p near the 
boundary [4,7]. 

Chorin [2] proposed a projection method for the more 
general Navier-Stokes equations that determines p without 
any artificial conditions onp. The method is based on the use 
of the equation V. u = 0 instead of Ap = V. f for finding p. 
Here we present a method based on the evaluation of p for 
the Stokes equations that requires no artificial conditions 
on p either. The idea is to use consistent finite difference 
operators to discretize Eqs. (1) and (2). It will be shown 
later in this section that the resulting system of equations is 
semi-definite if the difference operators satisfy a discrete 
analogue of the condition (u, Vp) = -(V ‘II, p) (see [3] for 
the discrete form of this condition). We eliminate u to form 
an equation Ap = b which uniquely determines p (up to a 
constant, of course). Since it is computationally inefficient 
to express u in terms of p explicitly, we shall only have to 
evaluate Ap, i.e., given a p, we can find Ap, where A is not 
written out (as in the iterative implementation of Chorin’s 
projection method [2]). It turns out that for some properly 
chosen operators the matrix A is semi-positive definite and 
very-well conditioned on the orthogonal complement of its 
null space, i.e., the condition number is small and bounded 
independently of the mesh size, so we can use the conjugate- 
gradient method to get the solution for p. Similar ideas were 
used by Maday and Patera [S] with a spectral element 
approach. 

Assume the domain Q is covered by some uniform grid of 
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mesh size h. Following the notations of Anderson [l], we 
approximate Eqs. ( 1) and (2) by finite difference equations, 

-/.4u+(v;J;)P=f> (5) 
Dh,u+D~u=O, (6) 

where A,, is an approximation to the Laplacian, Vf and Vz 
to the derivatives in the gradient operator, 0: and D: to the 
derivatives in the divergence operator. Notice that near the 
boundary A,u and Dtu + Dhyu contain velocity values on 
the boundary which are known. If we move those known 
terms to the right-hand side of equations, we can rewrite 
Eqs. (5) and (6) as 

-~LahU+(Vhr,v~)P=f+g(Ub) (7) 

&u + a;u = h(Ub), (8) 

where 

dub) = P A,u -P d”,u 

and 

h(ub) = i+ + b;u - (D;u + 0;~). or simply 

In other words, the operators with tilde’s differ from the 
original operators only near the boundary, and they are the 
parts of the operators A,,, Dt, D: that operate only on 
unknown values of the velocity. We will show how to 
calculate them once A,,, D”,, and Dz are defined in Section 2 
(see also [ 1 ] ). 

Put Eqs. (7) and (8) in block matrix form. We have 

Consider the quadratic form 

It is positive semi-definite, provided 

(24, V”,P) + (u, v;P) = -((&4P) + t&7 PI) (10) 

and 

(4 d”hU) < 0, (0, i&u) < 0. (11) 

Conditions (11) are satisfied for most reasonable dif- 
ference approximations to the Laplacian while condition 
(10) is just a discrete analogue of the condition 
(4 VP) = - (V. u, P). 

We can formally eliminate u and u in Eq. (9) to form a 
equation for p as follows: 

From Eq. (7) we obtain 

.=’ {d”klV~p-ak’(f,+gx(u,)} 
P 

and 

u=; (d”h’Vflp-d”k’(f”+g,“(Ug)}. 
Substitution of these expressions into Eq. (8) gives 

Ap=F’+F’, (12) 

where 

(12a) 

F* = /dz(uh). 

If we can solve Eq. (12) for p, then we can use Eq. (7) to 
obtain solutions for u and u. 

Of course we do not have to find 2;’ explicitly, but 
rather given a p (and II,), we can solve Eq. (7) for u and u 
and then use Eq. (8) to form Ap. It turns out that for some 
properly chosen operators A,,, D:, Dt , Vt , and V; the 
matrix A is semi-positive definite, so we can use the 
conjugate-gradient method to solve Eq. (12). 

Recall that Jh, &, 5: are different from A,,, Dt, D: only 
near the boundary, so if we choose 

A,, = D;V; + D;V; (13) 

which is just a discrete analogue of the definition of 
Laplacian, we will have 
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on all grid points except those near the boundary. By 
looking at the structure of matrix A in (12a), it is reasonable 
to believe that A is close to the identity matrix and that the 
conjugate-gradient method will converge in a few steps. We 
shall see that this is indeed the case by numerical examples. 

2. DISCRETIZATION OF THE DOMAIN 
AND CHOICE OF D”, V’, A,, 

We now implement the method for a special case of a 
staggered grid. Assume 52 is a unit square. Let h = l/n. 
Define meshes (see Fig. 1) 

U=((ih,(j+$)h)li=O ,..., n;j=O ,..., n-1) 

V={((i++)h,jh)li=O ,..., n-l;j=O ,..., H} 

P=(((i++)h,(j+$h)li,j=O,...,n-1) 

uO= u- unai2, vO= v- ihaS 

and define u on U, v on V, and p on P. 
The operators are defined as 

0;: U-+P 

by (D!lU)i+ l/2,,+ l/2 = (ui+ I,j+ l/2 -ui,j+ ,/2)/h 

0;: V+ P 

by (D;V)i+ 1/2,j+ l/2 = (vi+ Ip,j+ 1 -vi+ 1/2,j)lh 

Vh,:P+UO 

by (V!P)i,,+1/2= (Pi+l/2,j+1/2- P~-I/z,~+I/z)/~ 

v;: P-+ v” 

by CVt P)i.j+ 112 = (Pi+ ,/2,j+ l/2- Pi+ 1/2,j- ,/2)/h 

and we define A,u on U,, A,v on V, by the standard five- 
point approximation to the Laplacian except near the 

" + " + " t " t " + " 

" t " t " + " t " t " 

1' t " t " t " t " t " 

" t " t " t " t " t " 
1 q I = 1 _ 1 = 1 q I 

.EU n EV l kEP 

FIG. 1. Discretization of domain. 

boundary, where we use a first-order approximation; for 
instance, we put 

a% 
1% 

ui,3/2 - 3ui.l/2 t 2u,,0 

ay h2 

at j= 1. Similarly forj= n and a2u/ax2. With those choices 
of the operators, it can be checked that relation (13) is 
satisfied on all grid points, except those near the boundary. 

Now the operators Dh etc. are defined. We can obtain the 
corresponding b” as follows: if Dtu does not involve u6, put 
fihu= D:u; if it does, just put all ub =0 in Diu to obtain 
B~u. For instance, 

(B;u),,2,j+ l/2 = y. 

If we define the inner product on U”, V”, and P by 

n-1 n 

(d2 $)U"= C 1 4r,j-1/2*i,jp1/2 
i=* j=, 

and 

then it is easy to check that 

(D”,u+d;v,p),= -(V”,p, &/o-(v;p, U)@. 

Moreover, since 

-Jh= 

’ 5-l -1 o-1 \ 

-1 4-l -1 O-l 
. . . 

. . . . 

. . . . 

. . . 

. . . . 

. . . 

. . . 

\ -1 o-1 -1 5 

we have, by Gerschgorin’s theorem, 

and 

-(u, d”,24),0>,0 

-(u, d”,o),o>O. 
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Thus the matrix in Eq. (9) is indeed semi-positive definite 
and our numerical experiment shows that the matrix A is 
also semi-positive definite. 

With the discretization and the choice of operators made 
here, Eq. (12) has a non-trivial null space which is a 
constant pressure field. For the equation to have a solution 
the right-hand side must be orthogonal to the null space. In 
this case, this condition turns out to be 

C(F:j+F:,)=o. 
i, i 

It can be verified that it is always true that 

z F:j=O. 

The second part of the sum, C,,, Ff j, is just a midpoint rule 
approximation to the condition fan uh . n dS = 0 (see [ 1 ] ). 

The above description can be naturally extended to the 
three-dimensional case and all the conclusions remain true. 

3. SOLUTION OF THE EQUATIONS 

In this section, we specify the routines we used in our 
numerical examples. The goal is to solve Eq. (7) for u 
quickly with a given p. In the two-dimensional case there is 
a fast solver for this equation, namely, the subroutine 
BLKTRI from the NCAR set of routines FISHPACK. In 
the three-dimensional case, however, there is no fast solver 
available. We can apply the fast fourier transform (FFT) 
technique to reduce the problem to a two-dimensional 
problem (see, e.g., [S]). For instance, consider the equation 
for u, 

The grid is defined by x=(i-l)h, y=(j-0.5)/z, 
z = (k - 0.5)/z. We use FFT in the x-direction to reduce 
the problem to (n - 1) two-dimensional systems on the 
staggered grid y = (j-0.5)/z, z = (k-0.5)/z. Since u is 
specified on the boundary, only sine functions are needed in 
the FFT. For the resulting two-dimensional systems, we 
use the subroutine HSTCRT from the NCAR set of routines 
FISHPACK. 

To solve equation Ap = b, we use the standard conjugate- 
gradient method. Since there is a non-trivial null space, care 
must be taken to eliminate components in the null space. 
Let c denote the null vector of the matrix (which is a 
constant vector in this case) and (., .) the inner product 
on p defined in Section 2. The conjugate-gradient method 
algorithm is as follows: 

rO=h-APO, p” initial guess. 

For k = 0, 1, 2, . . . . 

,k=,d.$+ 
9 

(rk, rk) 
Mk = @, A#) 

P 
k+Lpk+rkZk 

yk + 1 = yk _ akAz”. 

The computational work in each iteration step of the con- 
jugate-gradient method is done mostly to form Ap, every- 
thing else is just some vector products which require labor 
of order O(N) (where N is the number of points in the 
domain). The formation of Ap requires solutions to two 
Laplace equations in the two-dimensional case or three 
Laplace equations in the three-dimensional case which cost 
O(Nlog N). Our solution to the steady Stokes equations 
thus requires work of order 2A4N log N or 3MN log N, 
where M is the number of iterations in the conjugate- 
gradient method. We will see from our numerical examples 
that A4 is very small even for very large N in the three- 
dimensional case. 

We first give an example in the two-dimensional case. 
As a test problem, we take f = (3 cos(x) sin(y), -sin(x) 
cos(y)), p = 1, ub = cos(X) sin(y), ub = --sin(X) COS( y), and 
Q={x,yIOdx<2n, Odydn}. In this case the exact 
solution is known to be 

u = cos(x) sin(y), 0 = -sin(x) cos( y), 

g = cos(x) sin(y), ap = sin(x) cos( y). 
ay 

In Table I we display the results of the calculation. We use 
the residual r of the pressure equation (12) as our computa- 
tion criterion, i.e., the iteration stops when max(r,, ;) is less 

TABLE I 

Numerical Results in 2D Case 

Grid size 20x 10 40x20 80 x 40 160x80 

Iterations 8 10 10 11 
L” norm of r 9.50x lo-” 8.84x lOmy 7.71 x lo-’ 9.06 x lOmx 

e(u) 1.21 x IO-’ 2.92 x 10m4 7.23 x 10m5 1.80 x 1O-5 
e(v) 5.06 x 1O-4 1.17 x 1O-4 2.87 x lo-’ 7.13 x 10m6 

e(p,) 2.07x lo-’ 5.68 x lo-’ 1.48 x lo-’ 3.77 x 10m4 
e(p.,) 1.49 x 1O-2 4.58 x IO-’ 1.26x 10m3 3.30x 10m4 
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than 1 x 10-7. We should mention that by our construction 
this residual is exactly the divergence of the velocity field; 
i.e., we have 

Y;, j = (D$ + Dp),,,. 

We denote by e(u), e(u), e(p,), and e(p,) the errors of U, u, 
pX, and pY, i.e., the absolute value of the differences between 
the exact solutions and our numerical solutions, respec- 
tively. All the errors are measured in the L” norm. 

For the case of three dimensions, we choose the test 
problem to be 

ub = sin(x) cos(y) cos(2z) 

ub = cos(x) sin(y) cos(2z) 

wb = - cos(x) cos( y) sin(2z) 

f = (0, 0, - 18 cos(x) cos(y) sin(2z)) 

p= 1, 

We also have the exact solution as: 

u = sin(x) cos( y) cos(2z) 

u = cos(x) sin(y) cos(2z) 

w = - cos(x) cos( y) sin(2z) 

p = 6 cos(x) cos(y) cos(2z). 

Table II shows our numerical results for this problem. 
We can see from the numerical results that we achieved 

second-order accuracy for the velocity in both cases despite 
the fact that we used a first-order approximation for the 
Laplacian operator near the boundary. The calculation for 
the pressure is less accurate, which is expected. The number 
of iterations grows very slightly as the mesh size increases 
both in the two- and three-dimensional cases. There is no 
substantial increase of the number of iterations from two 

TABLE II 

Numerical Results in 3D Case 

Grid size 20x20~10 40x40~20 80x80~40 160x160~80 

Iterations 13 16 18 19 
L” norm of r 9.82 x lo-+’ 1.48 x lo-* 5.18 x lo-’ 8.47 x lO-8 

e(u) 9.47 x lo-’ 2.66x 1O-3 7.07 x 10m4 1.83 x 1O-4 

e(u) 9.47 x 1O-3 2.66 x lo-’ 7.07 x 1O-4 1.83 x 10m4 

e(w) 1.02 x lo-* 2.64 x IO-’ 6.66x 1O-4 1.67 x 10m4 

e(pJ 0.105 5.54 x lo-* 2.81 x lo-* 1.41 x 10m2 

4P,) 0.105 5.54 x lo-* 3.72 x lo-* 1.41 x 10m2 

e(pA 0.202 0.100 6.71 x 10m2 2.52 x 1O-2 

TABLE III 

Iterations Needed for a Different Discretization 

Grid size 20x 10 40 x 20 80x40 160x80 

Iterations 31 45 48 49 
L” norm of r 7.98 x IO-’ 9.49 x IO-* 9.12x lo-” 9.25 x 10m8 

dimensions to three dimensions. This makes our method 
particularly suitable for three-dimensional calculations. 

One should note that for the conjugate-gradient method 
to converge in a few iterations, it is very important that rela- 
tion (13) in Section 2 be satisfied; i.e., the gradient and 
divergence operators should combine to form the discrete 
Laplacian used in the discretization of A,u. To show the 
importance of this, we make another calculation with a dif- 
ferent discretization of the domain and different choices of 
the operators. We take the same test problem in two dimen- 
sions. This time the two components of the velocity are 
defined on the same set of grid points defined by x, h = ih, 
i=O 9 ..., II. The pressure p is defined on the same grid as 
before. The operators are defined as 

(Dh,u)ii1/*.j+l~2=~ C("i+I,j+l-ui,j+I) 

+ (“i+l,j-ui,j)l 

(D$u) r+l;l,j+i/2=& C(“i+l,j+I-ui+l,j) 

+ t”i,j+l -ui.,)l 

+ (P,- l/2, jt l/2 -Pi- 1/2,J- 1,211, 

and A,, by the standard live-point approximation to the 
Laplacian. These definitions satisfy ( 10) (see [6]) and (1 1 ), 
but not (13). Table III shows the results of this calculation. 
We see that it requires about four times the iterations 
needed for the previous one. 

4. CONCLUSIONS 

We have presented a fast numerical technique for solving 
the steady-state Stokes equations which requires no artifi- 
cial conditions for the pressure near the boundary. Our 
numerical experiments show that the method is of second- 
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order accuracy for the velocity. The key idea of the method 
is to use some consistent difference operators to 
approximate the Stokes equations and then derive an 
equation Ap = b for the pressure such that the matrix A is 
semi-positive definite and very-well conditioned on the 
orthogonal complement of its null space. Therefore it is very 
efficient to use the standard conjugate-gradient method to 
solve the pressure equation. We implemented our method 
on a staggered grid for rectangular (cubic) domains and 
showed that the conjugate-gradient method converged in a 
very few iterations even for a very large number of grid 
points in the three-dimensional case. The reason we chose a 
staggered grid is because it is the simplest way to define the 
gradient and divergence operators so that they combine to 
form the usual five-point Laplacian, resulting in the easy 
solution for the Poisson equation for a given p. Other 
discretization will also work as long as relation (13) in 
Section 2 is satisfied and the resulting Poisson equation is 
easy to solve. The method can also be extended to other 
boundary conditions very easily since the boundary condi- 
tions only come in the solutions of the Poisson equation. 
Finally, the method is certainly applicable to more general 

domains as long as we can solve the Laplace equation on 
those domains. 
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